Using a lattice algorithm to estimate the Kalman gain vector in fast Newton-type adaptive filtering

نویسندگان

  • Marc Moonen
  • Ian K. Proudler
چکیده

In this paper we consider a recursive least squares (RLS) adaptive ltering problem where the input signal can be modelled as the output of a low order autoregressive (AR) process. We will show how a good estimate of the Kalman gain vector can be obtained using a small least squares lattice (LSL) lter. This estimate can then be used in the normal way to determine the optimum lter coe cients. The resulting adaptive ltering algorithm is similar in concept to the Fast Newton algorithm. The main di erence is the use of the LSL instead of a low order covariance domain fast RLS algorithm. The potential advantage of this new algorithm is that, unlike a covariance domain algorithm, a LSL can be implemented in a numerically stable form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fast Subsampled-Updating Fast Newton Transversal Filter (FSU FNTF) Algorithm for Adaptive Filtering Based on a Schur Procedure and the FFT

The Fast Newton Transversal Filter (FNTF) algorithm starts from the Recursive LeastSquares algorithm for adapting an FIR lter of length N. The FNTF algorithm approximates the Kalman gain by replacing the sample covariance matrix inverse by a banded matrix of total bandwidth 2M+1 (AR(M) assumption for the input signal). In this algorithm, the approximate Kalman gain can still be computed using a...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

The Fast Subsampled-Updating Fast Newton Transversal Filter (FSU FNTF) for Adapting Long FIR Filters

The FNTF algorithm starts from the RLS algorithm for adapting FIR lters. The FNTF algorithm approximates the Kalman gain by replacing the sample covariance matrix inverse by a banded matrix (AR(M) assumption for the input signal). The approximate Kalman gain can still be computed using an exact recursion that involves the prediction parts of two Fast Transversal Filter (FTF) algorithms of order...

متن کامل

Delay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering

Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997